
NXP Semiconductors Caen

 Page: 1 / 32

Getting started with HDMI TX Driver

Version 0.32

NXP Semiconductors Caen HDMI Tx Starter Guide

 Page: 2 / 32

Table of content

1. INTRODUCTION .. 4

1.1 PURPOSE AND SCOPE ... 4
1.2 HOW TO INTEGRATE HDMI TX DRIVER IN YOUR APPLICATION IN A NUTSHELL ... 4

2. OVERALL DESCRIPTION ... 5

2.1 SYSTEM ARCHITECTURE ... 5
2.2 SOFTWARE ARCHITECTURE .. 6
2.3 HARDWARE ARCHITECTURE ... 6
2.4 DATA FLOW ... 7

3. SOFTWARE USAGE .. 8

3.1 SOFTWARE CONTEXT ... 8
3.1.1 OS / No OS Mode .. 8
3.1.1 Userland / Linux kernel Mode .. 8
3.1.2 Polling / interrupt Mode ... 8
3.1.3 I2C wrapper .. 8
3.1.4 Multi low level driver support ... 8

3.2 SOFTWARE STATE DIAGRAM .. 9
3.3 SOFTWARE USE CASES .. 10
3.4 SOFTWARE SEQUENCE DIAGRAMS .. 17
3.5 OUTPUT AUDIO/VIDEO ... 17
3.6 CHANGE AUDIO AND/OR VIDEO FORMAT .. 18
3.7 CHANGE AUDIO FORMAT ONLY .. 18
3.8 STANDBY USAGE .. 19
3.9 STOP HDMI STREAMING .. 20
3.10 SET HDCP REVOCATION LIST .. 20
3.11 SOFTWARE CONFIGURATION .. 21
3.12 HARDWARE DIVERSITY .. 24
3.13 SOFTWARE DIVERSITY ... 24

3.13.1 TDA19988 specificities ... 25
3.13.2 TDA19989 / TDA9989 specificities .. 25
3.13.3 TDA9984 specificities ... 25
3.13.4 TDA9981/83 specificities .. 26

3.14 ZIP DELIVERY FILE STRUCTURE .. 27
3.14.1 High level driver ... 27
3.14.2 Low level driver .. 27
3.14.3 Shared include files .. 28
3.14.4 Example Application .. 28

4. DOCUMENT MANAGEMENT ... 29

4.1 DOCUMENT HISTORY ... 29
4.2 DOCUMENT REFERENCES ... 30
4.3 ABBREVIATIONS AND TERMINOLOGY ... 31

NXP Semiconductors Caen HDMI Tx Starter Guide

 Page: 3 / 32

Table of figures

FIGURE 1 HDMI SYSTEM ARCHITECTURE ... 5
FIGURE 2 HDMI TX SOFTWARE ARCHITECTURE ... 6
FIGURE 3 HDMI TX HARDWARE ARCHITECTURE .. 6
FIGURE 4 TMDLHDMITX DATA FLOW .. 7
FIGURE 5 TMDLHDMITX STATE DIAGRAM ... 9
FIGURE 6 TMDLHDMITX USE CASES .. 10
FIGURE 7 ENABLE HDMI OUTPUT SEQUENCE DIAGRAM ... 17
FIGURE 8 CHANGE AUDIO/VIDEO FORMAT SEQUENCE DIAGRAM ... 18
FIGURE 9 CHANGE AUDIO FORMAT ONLY SEQUENCE DIAGRAM .. 18
FIGURE 10 STANDBY OFF-ON SEQUENCE DIAGRAM ... 19
FIGURE 11 HDMI 5V MANIPULATION REGARDING DRIVER USAGE .. 19
FIGURE 12 STOP HDMI STREAMING .. 20
FIGURE 13: PCB AUDIO CONFIGURATION EXAMPLE .. 23
FIGURE 14 E-DDC SEGMENT POINTER AN BLOCK LAYOUT .. 26
FIGURE 15 FOUR BLOCKS EDID READING I

2
C SEQUENCE .. 27

NXP Semiconductors Caen HDMI Tx Starter Guide

 Page: 4 / 32

1. Introduction

1.1 Purpose and Scope

This document aims at describing how to use the HDMI Tx driver. The intended audience is
anyone who wants to make use of its application programming interface in order to drive a
TDA998x HDMI transmitter.

1.2 How to integrate HDMI Tx driver in your application in a nutshell

1. Unpack the delivered zip file, mandatory files in order to build up your own HDMI Tx
application are the following (Refer to 0) :

Shared Include files

Directory HdmiTx/sde2/inc/

HIGH LEVEL DRIVER

TDA9984 & TDA9989/88 TDA9983 & TDA9981

Directory HdmiTx/sde2/comps/tmdlHdmiTx/inc Directory HdmiTx/sde2/comps/tmdlTDA9983/inc

Directory HdmiTx/sde2/comps/tmdlHdmiTx/src Directory HdmiTx/sde2/comps/tmdlTDA9983/src

Directory HdmiTx/sde2/comps/tmdlHdmiTx/cfg Directory HdmiTx/sde2/comps/tmdlTDA9983/cfg

LOW LEVEL DRIVER

Directory HdmiTx/sde2/comps/tmbslHdmiTx/inc

TDA9984 TDA9989/88 TDA9983 & TDA9981

HdmiTx/sde2/comps/tmbslTDA9984\inc HdmiTx/sde2/comps/tmbslTDA9989\inc HdmiTx/sde2/comps/tmbslTDA9983\inc

HdmiTx/sde2/comps/tmbslTDA9984\src HdmiTx/sde2/comps/tmbslTDA9989\src HdmiTx/sde2/comps/tmbslTDA9983\src

2. Write your OS / No OS wrapper implementation (Refer to 3.1.1)

3. Write your I2C wrapper implementation (Refer to 3.1.3)

4. Write your HDMI Tx configuration file (Refer to 3.11)

5. Determine whether you will use the driver in ISR or polling mode (Refer to 3.1.2)

6. Write your own HDMI TX application by looking at source code example in provided test
application (Refer to 3.14.4)

7. For complete explanations regarding APIs parameters refer to the HTML API reference in
the delivered zip.

NXP Semiconductors Caen HDMI Tx Starter Guide

 Page: 5 / 32

2. Overall Description

2.1 System architecture

Source HDMI transmitters may be used in various consumers electronic applications such as
digital set-top boxes, DVD players/recorders, camcorders in order to output uncompressed digital
audio/video streams at high bitrates to cope with today‟s HD requirements.

Figure 1 depicts the architecture of HDMI systems:

Figure 1 HDMI System Architecture

HDMI system architecture is defined to consist of Sources and Sinks. A given device may have
one or more HDMI inputs and one or more HDMI outputs. Each HDMI input on these devices shall
follow all of the rules for an HDMI Sink and each HDMI output shall follow all of the rules for an
HDMI Source.

As shown in Figure 1, the HDMI cable and connectors carry four differential pairs that make up the
TMDS data and clock channels. These channels are used to carry video, audio and auxiliary data.
In addition, HDMI carries a DDC channel.

The DDC is used by the Source to read the Sink‟s Enhanced Extended Display Identification Data
(E-EDID) in order to discover the Sink‟s configuration and/or capabilities. Besides this
communication bus is also used for HDCP authentication.

The optional CEC protocol provides high-level control functions between all of the various
audiovisual products in a user‟s environment.

NXP Semiconductors Caen HDMI Tx Starter Guide

 Page: 6 / 32

2.2 Software architecture

Software architecture is depicted in Figure 2:

Application

High Level driver

(tmdlHdmiTx) *

Low Level driver

(tmbslHdmiTx)

SW/HW

TDA998x IC

uses

I2C

uses

* : the high level driver is named tmdlTDA9983 for the TDA 9983 IC

Figure 2 HDMI TX software architecture

Drivers are split in two parts: the low level driver (tmbslHdmiTx) that provides a first level of
abstraction of the underlying hardware and the high level driver (tmdlHdmiTx or tmdlTDA9983) that
provides a high level of functionality.

Low level driver offers a wide API allowing control of most IC parameters. It can be directly used by
customers that want full control of the device or that want to optimize their memory usage. High
level driver offers a restricted API for customers that are always using the device in a “standard”
configuration and want to optimize their software development costs.

2.3 Hardware architecture

Hardware architecture is depicted in Figure 3:

AUDIO

PROCESSING

HDMI

PACKET

INSERTION

VIDEO

PROCESSING
Multiplexer

HDCP

BLOCK

TMDS

BLOCK

Audio

Input

HDMI

Output

Video

Input

Figure 3 HDMI TX hardware architecture

The audio/video processing blocks provide some facilities to transform incoming audio/video data
to cope with Sink configuration and/or capabilities. Video pixel, packet and control data are
multiplexed together before being encrypted and send through the TMDS channels (HDMI Output).

NXP Semiconductors Caen HDMI Tx Starter Guide

 Page: 7 / 32

2.4 Data flow

Data flow is depicted in Figure 4:

Application

tmdlHdmiTx *

tmbslHdmiTx

Application Layer

HDMI Tx

IC / IP

High Level Layer

Low Level Layer

Digital

Audio

I2S/SPDIF

Digital

Video

RGB/YCbCr

HDMI stream

KSV List

Hardware Data Flow

Software Data Island Packets control

EDID Data Flow

* : also named tmdlTDA9983 for TDA9983 IC

Figure 4 tmdlHdmiTx data flow

Data is retrieved from digital audio/video sources and converted into an HDMI [HDMI_SPEC]
compliant stream thanks to a hardware data path.

The application controls data island packets insertion by enabling (or disabling) packets insertion
and providing associated packets payload.

EDID data may be retrieved by the Application in order to choose video / audio setting that match
display possibilities.

Receiver KSV list is readable in order to manage HDCP revocation list.

NXP Semiconductors Caen HDMI Tx Starter Guide

 Page: 8 / 32

3. Software usage

3.1 Software context

3.1.1 OS / No OS Mode

HDMI TX driver may be used in an application that makes use of an operating system or not. An
OS wrapper has to be written in file tmdlHdmiTx_IW.c to implement prototypes defined in
tmdlHdmiTx_IW.h.

3.1.1.1 OS Mode

When an OS is used the following rules shall be followed:

 tmdlHdmiTx component APIs shall be called from a task context.

 Only API tmdlHdmiTxHandleInterrupt may be called from ISR context, since no low level
driver calls are allowed in interrupt context, the internal processing of this call is deported
under a task context.

 Per instance the OS mode requires: 2 tasks, 1 semaphore, and 1 command queue.

3.1.1.2 No OS Mode

In this context, tmdlHdmiTx is not sharing CPU resources with other drivers and no tasks or other
OS objects are used.

When there is no OS the following rules shall be followed:

 Polling mode shall be used. (see chapter below)

 Application will have to call periodically function tmdlHdmiTxCheck (we recommend each
40 msec) in order to verify that the sink is still HDCP-capable. For this purpose this API
provide a timeSinceLastCall parameter which provide a time base used to know when a
check shall be done.

The compilation flag TMFL_NO_RTOS shall be defined in order to use the HDMI TX drivers in this
mode. (Refer to 3.12)

3.1.1 Userland / Linux kernel Mode

HDMI Tx diver can be used in userland context or in Linux kernel context.

 Using HDMI driver from the user space is easier for non-Linux-expert, but needs to have
I2C functions available from userland.

 The compilation flag TMFL_LINUX_OS_KERNEL_DRIVER shall be defined to use HDMI
driver in Linux kernel mode.

3.1.2 Polling / interrupt Mode

HDMI Tx interruptions may be used or not. When there is no interrupt line connected to the host
processor or when there is no OS a polling mode shall be used. That means that function
tmdlHdmiTxHandleInterrupt shall be called by the Application periodically (each 40ms).

3.1.3 I2C wrapper

In order to read/write HDMI Tx IC register an I2C driver has to be provided by the application,
besides an I2C wrapper has to be written in file tmdlHdmiTx_cfg.c to implement prototypes defined
in tmbslHdmiTx_types.h.

3.1.4 Multi low level driver support

tmdlHdmiTx API is common to all HDMI Tx family. When an API is called and that the underlying
hardware does not support it a TMDL_ERR_DLHDMITX_NOT_SUPPORTED error code is returned.
Please refer to the provided datasheet for a list of supported features.

NXP Semiconductors Caen HDMI Tx Starter Guide

 Page: 9 / 32

3.2 Software state diagram

Figure 5 shows the internal state machine of the tmdlHdmiTx (and tmdlTDA9983) component

INITIALIZED

Close

UNPLUGGED

InstanceSetup

NOT_INITIALIZED

Open

PLUGGED

Event

HPD inactive

Event

HPD active

EDID_AVAILABLE

Event

HPD inactive

Event EDID read

Figure 5 tmdlHdmiTx state diagram

Presented states have the following signification:

State name State description

NOT_INITIALIZED This is the default state of the driver before initialization.

INITIALIZED The driver has been instantiated but not configured yet.

UNPLUGGED
The driver is configured. Receiver has not asserted a high
voltage level yet.

PLUGGED Transition from Low to High detected on the HPD input.

EDID_AVAILABLE Receiver EDID has been received.

NXP Semiconductors Caen HDMI Tx Starter Guide

 Page: 10 / 32

3.3 Software use cases

tmdlHdmiTx (and tmdlTDA9983) use cases are depicted in Figure 6 :

Application

Initialisation/

Termination
ConfigurationPower Management

tmdlHdmiTxOpen

tmdlHdmiTxOpenM

tmdlHdmiTxClose

tmdlHdmiTxGetSWVersion

tmdlHdmiTxGetNumberOfUnits

tmdlHdmiTxGetCapabilities

tmdlHdmiTxGetCapabilitiesM

tmdlHdmiTxInstanceSetup

tmdlHdmiTxGetInstanceSetup

tmdlHdmiTxRegisterCallbacks

tmdlHdmiTxGetVideoFormatSpecs

tmdlHdmiTxSetPowerState

tmdlHdmiTxGetPowerState

Control

tmdlHdmiTxHandleInterrupt

tmdlHdmiTxEnableEvent

tmdlHdmiTxDisableEvent

tmdlHdmiTxSetInputOutput

tmdlHdmiTxSetAudioInput

tmdlHdmiTxSetVideoInfoframe

tmdlHdmiTxSetAudioInfoframe

tmdlHdmiTxSetACPPacket

tmdlHdmiTxSetGeneralControlPacket

tmdlHdmiTxSetISRC1Packet

tmdlHdmiTxSetISRC2Packet

tmdlHdmiTxSetMPSInfoframe

tmdlHdmiTxSetSpdInfoframe

tmdlHdmiTxSetVsInfoframe

tmdlHdmiTxSetDebugNullPacket

tmdlHdmiTxSetDebugSingleNullPacket

tmdlHdmiTxSetAudioMute

tmdlHdmiTxResetAudioCts

tmdlHdmiTxSetGamutPacket

EDID Management

tmdlHdmiTxGetEdidStatus

tmdlHdmiTxGetEdidAudioCaps

tmdlHdmiTxGetEdidVideoCaps

tmdlHdmiTxGetEdidVideoPreferred

tmdlHdmiTxGetEdidSinkType

tmdlHdmiTxGetEdidSourceAddress

tmdlHdmiTxGetEdidDetailledTimingDescriptors

tmdlHdmiTxGetEdidMonitorDescriptors

tmdlHdmiTxGetEdidTVPictureRatio

tmdlHdmiTxGetEdidLatencyInfo

HDCP Management

tmdlHdmiTxGetKsvList

tmdlHdmiTxSetHdcp

tmdlHdmiTxGetHdcpState

tmdlHdmiTxHdcpCheck

tmdlHdmiTxSetHDCPRevocationList

tmdlHdmiTxGetHdcpFailStatus

Figure 6 tmdlHdmiTx use cases

 Initialization / Termination

tmdlHdmiTxOpen and tmdlHdmiTxClose shall be called in order to respectively instantiate,
terminate a given tmdlHdmiTx SW instance.

Note that tmdlHdmiTxOpen shall be called prior to any other APIs for a given instance (except
tmdlHdmiTxGetSWVersion).

NXP Semiconductors Caen HDMI Tx Starter Guide

 Page: 11 / 32

 Configuration

- Then, HDMI Tx instance shall be configured in order to define its behavior thanks to a
tmdlHdmiTxInstanceSetup call.

In this function application specifies whether

o the instance has to cope with [SIMPLAY_HD] specification

o the instance is part of a repeater device, which change its behavior regarding HDCP
management.

Moreover it is up to the application to provide a pointer to the memory space allocated for the
EDID data and the size of this space in bytes. This size shall be a multiple of 128 since
Application has to provide space for reading an entire number of EDIDs blocks.

- Application is informed of underlying HDMI Tx capabilities with a call to
tmdlHdmiTxGetCapabiliites

Capability name Capability Description

deviceVersion HDMI Tx IC chip family

fastI2C Boolean indicating fast I
2
C handling

hdmiVersion Supported HDMI specifications

audioPacket

Booleans indicating whether the chip supports or not:

- HBR

- DST

- oneBitAudio

hdcp Boolean indicating whether the chip supports HDCP or not.

scaler Boolean indicating whether the chip has a scaler or not.

- Application has to register a callback function (tmdlHdmiTxRegisterCallbacks) in order to be
informed of the followings events:

Event name Event Description

HDCP_ACTIVE The transmitter enables HDCP encryption.

HDCP_INACTIVE

An HDCP error has been detected or HDCP handling has been
disabled. In case of a HDCP failure, user application can call function
tmdlHdmiTxGetHdcpFailStatus in order to know at which HDCP step it
occurs.

HPD_ACTIVE
Hot Plug detect signal is asserted. Upon detection of this signal the
driver will internally trigger an EDID read procedure.

HPD_INACTIVE Hot Plug detect signal is de-asserted.

RX_KEYS_RECEIVED Receiver‟s KSV (Bksv) received

RX_DEVICE_ACTIVE 1 Receiver connected to the transmitter and powered up.

1 Note available for TDA 9983 IC

NXP Semiconductors Caen HDMI Tx Starter Guide

 Page: 12 / 32

RX_DEVICE_INACTIVE
1
 Receiver disconnected or no more powered up.

EDID_RECEIVED An EDID block has been received and read.

 tmdlHdmiTxRegisterCallbacks shall be called before tmdlHdmiTxInstanceSetup.

Some events processing can be found in function eventCallbackTx in the provided example

application.

 Power Management

API tmdlHdmiTxSetPowerState may be use to set the chip in standby and then to reduce the
power consumption. In this mode the IC is not able to output HDMI stream but is still able to report
HDMI connection status via HPD_ACTIVE / HPD_INACTIVE and RX_DEVICE_ACTIVE

/ RX_DEVICE_INACTIVE 1 events.

 Control

- Application shall notify the driver of interrupts via the API tmdlHdmiTxHandleInterrupt, the cause
of the interrupt is parsed by the tmdlHdmiTx and is reported to the application in the form of an
event. In the case where the host processor is not connected to the HDMI Tx IC interrupt line it is
expected that the application triggers periodically (we recommend each 40 msec) the driver thanks
to this API.

- Application defines the audio/video input characteristics and the chosen video output thanks to
tmdlHdmiTxSetInputOuput. There is not check of consistency when this API is call; it‟s up to the
application to set a video output that is supported by the connected display. Moreover thanks to
this API it is possible to force the type of the sink (HDMI or DVI).

- When only audio characteristics have to be changed, API tmdlHdmiTxSetAudioInput can be
called.

- Application controls data island packets insertion by enabling (or disabling) packets insertion and
providing associated packets payload. This is done thanks to the following APIs:

API name Usage

tmdlHdmiTxSetVideoInfoframe
Enable Auxiliary Video InfoFrame generation with provided data,
or disable it. (*)

tmdlHdmiTxSetAudioInfoframe
Enable Audio InfoFrame generation with provided data, or disable
it. (*)

tmdlHdmiTxSetACPPacket
Enable Audio Content Protection Packets generation with
provided data, or disable it.

tmdlHdmiTxSetGeneralControlPacket
Enable General Control Packet generation with provided data, or
disable it.

tmdlHdmiTxSetISRC1Packet
Enable International Standard Recording Code packet generation
with provided data, or disable it.

tmdlHdmiTxSetISRC2Packet
Enable International Standard Recording Code packet generation
with provided data, or disable it.

tmdlHdmiTxSetMPSInfoframe
Enable MPEG Source InfoFrame packet generation with provided
data, or disable it.

tmdlHdmiTxSetSpdInfoframe
Enable Source Product Description InfoFrame packet generation
with provided data, or disable it.

tmdlHdmiTxSetVsInfoframe Enable Vendor Specific InfoFrame packet generation with

1 Not avalable for TDA9983 IC

NXP Semiconductors Caen HDMI Tx Starter Guide

 Page: 13 / 32

provided data, or disable it.

tmdlHdmiTxDebugSetNullPacket
Enable Null Packet generation or disable it.

For debug purpose only.

tmdlHdmiTxDebugSetSingleNullPacket
Send a single null packet.

For debug purpose only.

tmdlHdmiTxSetGamutPacket
Enable Gamut Metadata packet generation with provided data, or
disable it.

tmdlHdmiTxSetExtendedColorimetry

Enable or Disable extended colorimetry and its YCC quantization
range settings in AVI infoFrame according to HDMI1.4. If the
extended colerimetry needs to send Gamut Metadata packet, the
above API tmdlHdmiTxSetGamutPacket is called. The latter only
handles the extended colorimetries xvYCC601 and xvYCC709
without YCC quantization range indication but this API handles all
the extended colorimetries xvYCC601, xvYCC709, sYCC601,
AdobeYCC601, AdobeRGB with YCC quantization range
indication.

When an extended colorimetry is transmitted, the Tx has to be set
to bypass mode, that is the output video mode is set to the same
as the input video mode. This will quanrantee that no expected
color space coversion is made internally by the Tx.

(*) Application may not call tmdlHdmiTxSetVideoInfoframe and tmdlHdmiTxSetAudioInfoframe to
describe active audio and video since this is internally handled by an API call to
tmdlHdmiTxSetInputOutput where the driver provide minimal required information.
For video, video format (see definition in [CEA-861-D]) and video output (RGB or YUV422 or
YUV444) are filled in.

For audio, an audio info frame packet structure is filled as such:

pktAif.ChannelCount = aifChannelCountCode; /* number of audio channels */

pktAif.CodingType = 0; /* refer to stream header as specified in [HDMI_SPEC] */

pktAif.SampleSize = 0; /* refer to stream header as specified in [HDMI_SPEC]*/

pktAif.SampleFreq = refer to [HDMI_SPEC] Table Audio Infoframe Packet contents

pktAif.ChannelAlloc = 0; /* ch 1 & 2 to speakers Front Left & Front Right */

pktAif.LevelShift = 0; /* 0dB level shift */

pktAif.DownMixInhibit = 0; /* down-mix stereo permitted */

- Application is able to mute audio On or Off with API tmdlHdmiTxSetAudioMute.

- Application is able to reset CTS value with tmdlHdmiTxResetAudioCts for instance when the
audio sample rate change.

- Application is able to retrieve HPD and RXsense status from driver thanks to APIs
tmdlHdmiTxGetHPDStatus and tmdlHdmiTxGetRXSenseStatus.

NXP Semiconductors Caen HDMI Tx Starter Guide

 Page: 14 / 32

 EDID Management

Application is able to manage EDID related data with the following APIs:

API name API usage

tmdlHdmiTxGetEdidStatus Use this API to know EDID reading status:

EDID_READ : All EDID blocks are available

EDID_READ_INCOMPLETE : Some EDID blocks read but
no sufficient memory provided by application to store all
EDID blocks.

EDID_ERROR_CHK_BLOCK_0 : Block 0 checksum error

EDID_ERROR_CHK : Block 0 read but checksum errors in
other blocks

EDID_NOT_READ : EDID not read.

EDID_STATUS_INVALID: Low level driver has returned
and invalid status code.

tmdlHdmiTxGetEdidAudioCaps Use this API to know receiver display audio capabilities
where :

- Encountered Audio Data Block are stored in an
array

- An audio flag integer is filled as such:

 b7 basic audio supported

 b6 AI supported (ACP supported)

 b5-b0 0

tmdlHdmiTxGetEdidVideoCaps Use this API to know receiver display video capabilities
where :

- Encountered Video Data Block are stored in an
array

- A video flags integer is filled as such:

 b7 underscan supported1

 b6 YCbCr 4:4:4 supported

 b5 YCbCr 4:2:2 supported

 b4 undefined

 b3 undefined

 b2 undefined

 b1 xvYCC709 supported
 b0 xvYCC601 supported

tmdlHdmiTxGetEdidVideoPreferred Get preferred video format from previously read EDID.

tmdlHdmiTxGetEdidSinkType This API will return the sink type (DVI or HDMI). If the
EDID read has failed or has not been done the returned
type will be DVI.

tmdlHdmiTxGetEdidSourceAddress Get HDMI Tx own physical address.
Refer to [HDMI_SPEC] § Physical Address

tmdlHdmiTxGetEdidDetailledTimingDescriptors This API will return a number of Detailed Timing
Descriptors regarding what is available from previously
read EDID.

1 The Underscan mode displays the full video frame, which reveals content on the edges that is recorded but not shown.

NXP Semiconductors Caen HDMI Tx Starter Guide

 Page: 15 / 32

tmdlHdmiTxGetEdidMonitorDescriptors This API will return the Monitor Name Descriptor and the
Monitor Range Limit descriptor, plus other descriptors if
available.

tmdlHdmiTxGetEdidTVPictureRatio This API will return the sink device‟s aspect ratio.

tmdlHdmiTxGetEdidLatencyInfo This API will return the sink device‟s latency information.
Refer to [HDMI_SPEC] §8.9.1

 HDCP Management

- The application has the ability to retrieve the receiver key list in order to check with a
revocation key list with API tmdlHdmiTxGetKsvList.

- tmdlHdmiTxCheck API is proposed when this driver is used without any OS to check that
the sink is still HDCP-capable. When this driver is used within an OS, this is handled
internally thanks to the HDCP task.

- tmdlHdmiTxGetHdcpState provides information regarding the internal HDCP protocol state,
where the following stages have been defined :

HDCP state State meaning

CHECK_NOT_STARTED HDCP algorithm not STARTED.

CHECK_IN_PROGRESS HDCP algorithm STARTED.

CHECK_PASS HDCP Encryption enabled and running on.

CHECK_FAIL_DRIVER_STATE
HDCP Encryption disabled.
Refer to state A0 description in [HDCP].

CHECK_FAIL_DEVICE_T0 A problem has occurred during HDCP authentication.

CHECK_FAIL_DEVICE_RI Comparison Ri = R‟i failed

CHECK_FAIL_DEVICE_FSM Comparison Pj = P‟j failed

- tmdlHdmiTxSetHdcp API shall be used in order to enable/disable HDCP encryption. In
order to enable HDCP encryption it shall be called after tmdlHdmiTxSetInputOuput.

- tmdlHdmiSetHDCPRevocationList API shall be used to set a list of KSV to revoke. This list
is then checked on the fly or during HDCP authentication.

o on the fly: the list is compared to the current ksv list, if a sink is in the list the API will
return TMDL_DLHDMITX_HDCP_NOT_SECURE ; it is then up to the application to
stop HDCP. If no sinks are found in the list TMDL_DLHDMITX_HDCP_SECURE is
returned.

o during HDCP authentication: if the KSV of specified sink is in the revocation list,
HDCP authentication will fail for this sink. This API must be called prior to enabling
the HDCP encryption.

Note: the KSV revocation list must be located in static memory since no copy of the
list is made within the driver.

 3D Management

- From sink to source, 3D capabilities of sink (like TV) can be read using the
tmdlHdmiTxGetEdidExtraVsdbData

API. Then refer to HDMI standard to parse the tmdhHdmiTxEdidExtraVsdbData structure
and get the vendor specific data block with 3D capabilites.

- From the source to the sink, when 3D is used, the 3D video mode of HDMI output can be
claimed in the vendor specific info frame as described in HDMI standard using the

NXP Semiconductors Caen HDMI Tx Starter Guide

 Page: 16 / 32

tmdlHdmiTxSetVsinfoFrame API or using the tmdlHdmiTxSetInputOutput API that
automatically set the vendor specific info frame.

NXP Semiconductors Caen HDMI Tx Starter Guide

 Page: 17 / 32

3.4 Software sequence diagrams

3.5 Output audio/video

Hereafter we present a typical API sequence that shall be executed in order to output audio/video

content. Thi sequence is used in the provided example application in function HdmiTx_Init

HDMI TX

High Level Driver

NOT_INITIALIZED

Open

INITIALIZED

RegisterCallbacks

InstanceSetup

HPD_ACTIVE

EDID_RECEIVED

GetCapabilities

GetEdidVideoCaps

GetEdidAudioCaps

GetEdidSinkType

SetInputOutput

UNPLUGGED

PLUGGED

EDID_AVAILABLE

SetHdcp

RX_KEYS_RECEIVED

HDCP_ACTIVE

IF HDCP content to output

Application

EDID reading is

automatically

triggered by the

driver

state

API call

Incoming Events

GetEdidStatus

EnableEvent

Enable wanted

events

Figure 7 Enable HDMI Output sequence diagram

NXP Semiconductors Caen HDMI Tx Starter Guide

 Page: 18 / 32

At first application has to initialize an HDMI Tx instance thanks to a call to tmdlHdmiTxOpen.

Then it shall register a callback function in order to be notified of HDMI driver events
(tmdlHdmiTxRegisterCallbacks). It has also to retrieve the capabilities of the underlying HDMI Tx
IC in order to know which functionalities are supported. Then wanted notification events are
enabled with several calls to tmdlHdmiTxEnableEvent.

After that API tmdlHdmiTxInstanceSetup is called to configure the driver. Depending on
tmdlHdmiTxHandleInterrupt call mode (via host processor interrupts or periodically from a task
context) events are reported to the application regarding the receiver activity and current HDMI Tx
status.

When EDID has been read at driver level, Application checks the result of the EDID reading
process via a call to tmdlHdmiTxGetEdidAudioStatus. Then, Application is able to analyze receiver
capabilities (tmdlHdmiTxGetEdidSinkType, tmdlHdmiTxGetEdidAudioCaps, and
tmdlHdmiTxGetEdidVideoCaps) and to configure HDMI Tx input and output in order to start
streaming the audio/video content (tmdlHdmiTxSetInputOuput). If the EDID can not be read, it is
up to the Application to choose a video output mode that should supported by the sink (this is
dependent of the targeted consumer electronic application).

If this content shall be encrypted a call to tmdlHdmiTxSetHdcp is required.

3.6 Change audio and/or video format

SetInputOutput

HDMI TX

High Level Driver
Application

EDID_AVAILABLE

Figure 8 Change audio/Video format sequence diagram

In order to change audio and/or video format, application has to call API tmdlHdmiTxSetInputOuput.

3.7 Change audio format only

SetAudioInput

Application
HDMI TX

High Level Driver

EDID_AVAILABLE

Figure 9 Change Audio format only sequence diagram

In order to change audio format, application has to call API tmdlHdmiTxSetAudioInput.

NXP Semiconductors Caen HDMI Tx Starter Guide

 Page: 19 / 32

3.8 Standby usage

SetPowerState(OFF)

HPD_INACTIVE

HPD_ACTIVE

SetPowerState(ON)

Application
HDMI TX

High Level Driver

EDID_AVAILABLE

UNPLUGGED

PLUGGED

EDID_AVAILABLE

Figure 10 Standby OFF-ON sequence diagram

Application can switch the HDMI Tx in power OFF mode with a call to tmdlHdmiTxSetPowerState.
In this mode HPD events are still monitored, therefore when the power is switched ON again an
EDID read will be internally triggered when required.

In order to save power some Applications may want to cut 5V when HDMI is not used. This
operation has to be done carefully regarding HDMI driver state. Basically, here is what has to be
checked :

- 5V shall be there before doing tmdlHdmiTxOpen
- After setting the IC in Standby it is possible to cut 5V
- Before doing tmdlHdmiTxSetPowerState(ON), 5V shall be present.

Those principles are depicted in picture below:

HDMI

NOT USED

HDMI

USED

time

0V

5V

Driver

INIT

Driver

STANDBY

Driver

ON

HDMI

USED

Figure 11 HDMI 5V manipulation regarding driver usage

NXP Semiconductors Caen HDMI Tx Starter Guide

 Page: 20 / 32

3.9 Stop HDMI streaming

HDMI TX

High Level Driver

EDID_AVAILABLE

Close

NOT_INITIALIZED

Application

Figure 12 Stop HDMI streaming

In order to stop the streaming Application has to call the API tmdlHdmiTxClose.

3.10 Set HDCP revocation list

SetHDCPRevocationList

HDMI TX

High Level Driver
Application

INITIALIZED

In order to set a list of sinks to revoke, the application must call the API
tmdlHdmiTxSetHDCPRevocationList.

NXP Semiconductors Caen HDMI Tx Starter Guide

 Page: 21 / 32

3.11 Software configuration

The application specifies per tmdlHdmiTx instance HDMI TX parameters by setting values in file
tmdlHdmiTx_cfg.c:

COMMAND_TASK_PRIORITY_0 This parameter set the priority of the command task that performs
the deported processing of the ISRs.

COMMAND_TASK_STACKSIZE_0 This parameter set the stack size of the command task.1

COMMAND_TASK_QUEUESIZE_0 This parameter set the size of the queue which is used to deport

ISRs commands.2

HDCP_CHECK_TASK_PRIORITY_0 This parameter set the priority of the hdcp task.

This task is used to trigger low level driver third part of HDCP
authentication protocol, where verification is made at a minimum
rate of once every two seconds to insure that the video receiver is
still able to correctly decrypt the information.

It is recommended to set the same priority has the one set to the
command task.

HDCP_CHECK_TASK_STACKSIZE_0 This parameter set the stack size of the hdcp task.

UNIT_I2C_ADDRESS_0 Define the I
2
C address of the HDMI Tx IC.

TxI2cReadFunction Function pointer of the infrastructure dependent I
2
C read function.

TxI2cWriteFunction Function pointer of the infrastructure dependent I
2
C write function.

KEY_SEED 16 bits seed for keys decryption during the loading into the HDCP
memory. Contact your NXP field application engineer to get this
key.

TMDL_HDMITX_PATTERN_BLUE Used to manage video output when the Sink is not HDCP-capable.
Refer to [SIMPLAY_HD]

dataEnableSignalAvailable When using external synchronization mode : set this parameter to
1 if DE signal is available, 0 otherwise.

By respectively filling videoPortMapping_YUV444, videoPortMapping_RGB444,
videoPortMapping_YUV422, videoPortMapping_CCIR656 arrays the Application defines how the
video input signals are connected to the HDMI TX IC.

For instance, let‟s assume that your video input signal is coming as such :

1 This value is OS dependent.

2 The value provided with sample configuration file can be used.

NXP Semiconductors Caen HDMI Tx Starter Guide

 Page: 22 / 32

Video
Input

RGB444 YUV444 YUV422sp CCIR656

VPA[7..0] B U - CbYCrCb

VPB[7..0] G Y Y -

VPC[7..0] R V CbCr -

you have then to set your configuration file like this:

const tmdlHdmiTxCfgVideoSignal444 videoPortMapping_YUV444[MAX_UNITS][6] = {

 {

 TMDL_HDMITX_VID444_BU_0_TO_3, /* Signals connected to VPA[0..3] */

 TMDL_HDMITX_VID444_BU_4_TO_7, /* Signals connected to VPA[4..7] */

 TMDL_HDMITX_VID444_GY_0_TO_3, /* Signals connected to VPB[0..3] */

 TMDL_HDMITX_VID444_GY_4_TO_7, /* Signals connected to VPB[4..7] */

 TMDL_HDMITX_VID444_VR_0_TO_3, /* Signals connected to VPC[0..3] */

 TMDL_HDMITX_VID444_VR_4_TO_7 /* Signals connected to VPC[4..7] */

 }

};

const tmdlHdmiTxCfgVideoSignal444 videoPortMapping_RGB444[MAX_UNITS][6] = {

 {

 TMDL_HDMITX_VID444_BU_0_TO_3, /* Signals connected to VPA[0..3] */

 TMDL_HDMITX_VID444_BU_4_TO_7, /* Signals connected to VPA[4..7] */

 TMDL_HDMITX_VID444_GY_0_TO_3, /* Signals connected to VPB[0..3] */

 TMDL_HDMITX_VID444_GY_4_TO_7, /* Signals connected to VPB[4..7] */

 TMDL_HDMITX_VID444_VR_0_TO_3, /* Signals connected to VPC[0..3] */

 TMDL_HDMITX_VID444_VR_4_TO_7 /* Signals connected to VPC[4..7] */

 }

};

const tmdlHdmiTxCfgVideoSignal422 videoPortMapping_YUV422[MAX_UNITS][6] = {

 {

 TMDL_HDMITX_VID422_NOT_CONNECTED, /* Signals connected to VPA[0..3] */

 TMDL_HDMITX_VID422_NOT_CONNECTED, /* Signals connected to VPA[4..7] */

 TMDL_HDMITX_VID422_Y_4_TO_7, /* Signals connected to VPB[0..3] */

 TMDL_HDMITX_VID422_Y_8_TO_11, /* Signals connected to VPB[4..7] */

 TMDL_HDMITX_VID422_UV_4_TO_7, /* Signals connected to VPC[0..3] */

 TMDL_HDMITX_VID422_UV_8_TO_11 /* Signals connected to VPC[4..7] */

 }

};

const tmdlHdmiTxCfgVideoSignalCCIR656 videoPortMapping_CCIR656[MAX_UNITS][6] = {

 {

 TMDL_HDMITX_VIDCCIR_4_TO_7, /* Signals connected to VPA[0..3] */

 TMDL_HDMITX_VIDCCIR_8_TO_11, /* Signals connected to VPA[4..7] */

 TMDL_HDMITX_VIDCCIR_NOT_CONNECTED, /* Signals connected to VPB[0..3] */

 TMDL_HDMITX_VIDCCIR_NOT_CONNECTED, /* Signals connected to VPB[4..7] */

 TMDL_HDMITX_VIDCCIR_NOT_CONNECTED, /* Signals connected to VPC[0..3] */

 TMDL_HDMITX_VIDCCIR_NOT_CONNECTED /* Signals connected to VPC[4..7] */

 }

};

For YCbCr 422 semi-planar and YCbCr 422 compliant with ITU656 video inputs the HDMI TX IC
can handle 12 bits, therefore if only 8 bits are coming in we only map the MSB bits.

NXP Semiconductors Caen HDMI Tx Starter Guide

 Page: 23 / 32

By respectively filling enableAudioPortxxx, enableAudioClockPortxxx the Application defines how
the audio input signals are connected to the HDMI TX IC. Variables groundAudioPortxxx,
groundAudioClockPortxxx are provided to connect to ground unused ports. For instance, the PCB
layout below entails the following setting for I2S and SPDIF:

UInt8 enableAudioPortSPDIF[MAX_UNITS] = {0x40};

UInt8 enableAudioClockPortSPDIF[MAX_UNITS] = {DISABLE_AUDIO_CLOCK_PORT};

UInt8 groundAudioPortSPDIF[MAX_UNITS] = {0xbf};

UInt8 groundAudioClockPortSPDIF[MAX_UNITS] = {ENABLE_AUDIO_CLOCK_PORT_PULLDOWN};

UInt8 enableAudioPortI2S[MAX_UNITS] = {0x03};

UInt8 enableAudioPortI2S8C[MAX_UNITS] = {0x1f};

UInt8 enableAudioClockPortI2S[MAX_UNITS] = {ENABLE_AUDIO_CLOCK_PORT};

UInt8 groundAudioPortI2S[MAX_UNITS] = {0xfc};

UInt8 groundAudioPortI2S8C[MAX_UNITS] = {0xe0};

UInt8 groundAudioClockPortI2S[MAX_UNITS] = {DISABLE_AUDIO_CLOCK_PORT_PULLDOWN};

Figure 13: PCB Audio configuration example

During its initialization, the tmdlHdmiTx driver retrieves the values set by the application.

NXP Semiconductors Caen HDMI Tx Starter Guide

 Page: 24 / 32

3.12 Hardware diversity

TDA9981, TDA9983, TDA9984, TDA9989 require a video pixel clock always coming in when the
IC is not in power off.
This is not the case for TDA19989/88.

3.13 Software diversity

HDMI TX driver uses the following compilation flags:

Diversity flag Diversity usage Comments

FORMAT_PC When this compilation flag is set
video PC formats are supported
and video TV formats are
supported.

When not set only video TV
formats are supported.

TMFL_TDA9981_SUPPORT Use this compilation flag in order
to produce tmbslTDA9983
source code for TDA9981 IC
support.

TDA9981 only

TMFL_RX_SENSE_ON When this compilation flag is set
the Rx sense interrupt is
managed by the driver.

TDA9981 only

TMFL_HBR_SUPPORT Define this flag in order to
support HBR audio on TDA9989.

TDA9989 only

TMFL_CEC_AVAILABLE Define this flag in order to
support CEC protocol on
TDA9989.

TDA9989 only

NO_HDCP Define this flag is HDCP is not
required by your application.

TMFL_NO_RTOS Define this flag in order to use
the HDMI TX drivers in NO OS
mode.

TDA9984, TDA9989 only

TMFL_LINUX_OS_KERNEL_DRIVER Define this compilation flag to
build the drivers as Linux Kernel
driver.

SPDIF_ACLK_TO_CLOCK Define this compilation flag, if on
hardware the audio generator
can provide to the TDA9984 an
I2S clock in the same time

as the SPDIF (see application
note “Guidelines to implement
TDA9984A ” chapter “SPDIF
stability improvement”).

TDA9984 only

TMFL_HDCP_SUPPORT Define this compilation flag to
use HDCP feature.

TDA19989 only

TMFL_TDA19989 Define this compilation flag when
using TDA19989 IC.

TDA19989 only

TMFL_TDA19988 Define this compilation flag when
using TDA19988 IC.

TDA19988 only

NXP Semiconductors Caen HDMI Tx Starter Guide

 Page: 25 / 32

Moreover some compilation keywords have been defined in order to handle several compiler
targets. These keywords are : FUNC_PTR , CONST_DAT and RAM_DAT

They need to be set in order to compile in your environment. For instance under ARM7 we use the

following settings : FUNC_PTR=" " CONST_DAT="const " RAM_DAT=" "

3.13.1 TDA19988 specificities

 TDA19988 interoperability

Same API and source than TDA19989.

 3D frame packing

The TDA19988 supports up to 720p@24/25/30/50/60 fps and 1080p@24/25/30 in frame packing.

 Optimized power

Power consumption has been optimized by frozing useless clocks related to HDCP (SPDIF,
downsampler and color space conversion clocks). This feature is enabled by the TMFL_TDA19988

flag. See flag TMFL_HDCP_OPTIMIZED_POWER in the soure code for more details about power
management.

3.13.2 TDA19989 / TDA9989 specificities

 Power management

This HDMI TX IC supports the following power modes: (API tmdlHdmiTxsetPowerState):

tmPowerOn The chip is fully active

tmPowerSuspend In this mode the IC is not able to output HDMI stream but is still able to
report HDMI connection status via HPD_ACTIVE / HPD_INACTIVE and
RX_DEVICE_ACTIVE / RX_DEVICE_INACTIVE events.

tmPowerStandby Output activity detection is disabled

tmPowerOff NOT SUPPORTED

TDA9989 shall be powered ON before being able to output any Audio/Video stream.

 TDA9989 interoperability

It is possible to increase TDA9989 level of interoperability (EDID reading issues with some LCD
TVs) by defining the following compilation flag : TMFL_TDA9989_PIXEL_CLOCK_ON_DDC.

However using this flag introduces some system limitations :

- In order to perform properly the EDID reading, the system shall always provide a stable pixel
clock coming in.

- This pixel clock shall not change in between HPD_ACTIVE and EDID_READ event.

In other terms the application is no more free to change video coming in whenever it wants but
shall take care of HDMI driver state.

3.13.3 TDA9984 specificities

When the IC is put in STANDBY mode, there is no Rx sense management. In order to implement
properly some power saving in HDMI TX user application, once need to do the following :

- upon TMDL_HDMITX_HPD_ACTIVE do tmdlHdmiTxSetPowerState(tmPowerOn)
- upon TMDL_HDMITX_HPD_INACTIVE do tmdlHdmiTxSetPowerState(tmPowerStandby)
- upon TMDL_HDMITX_RX_DEVICE_INACTIVE dotmdlHdmiTxSetPowerState(tmPowerStandby)
- upon TMDL_HDMITX_RX_DEVICE_ACTIVE do nothing.

NXP Semiconductors Caen HDMI Tx Starter Guide

 Page: 26 / 32

3.13.4 TDA9981/83 specificities

 TDA9983 only: HPD interrupt is not always raised, consequently the interrupt mode can
not be used with this IC.

 EDID reading

The EDID reading I2C accesses have to be done by an external microprocessor through the HDMI
TX IC‟s I2C-bus gate. For that purpose, it is up to the application to implement an external
function (let‟s call it EdidBlockRead).

EdidBlockRead is registered via a pointer to function in file tmdlHdmiTx_cfg.c and will be called by
the driver during its EDID reading phase. The expected pointer to function prototype is the
following:

typedef struct _tmbslHdmiTxSysArgsEdid_t

{

 UInt8 segPtrAddr; /* 60h (8bits) */

 UInt8 segPtr; /* 0 or 1 for EDID 4 blocks reading */

 UInt8 dataRegAddr; /* A0h (8bits) */

 UInt8 wordOffset; /* 00h , 80h for second block in a given segment */

 UInt8 lenData; /* length of data to read : 80h (128 bytes) */

 UInt8 *pData; /* buffer to receive lenData bytes */

} tmbslHdmiTxSysArgsEdid_t;

typedef tmErrorCode_t (FUNC_PTR * ptmbslHdmiTxSysFuncEdid_t)

 (tmbslHdmiTxSysArgsEdid_t *pSysArgs);

In order to ease parameters comprehension, picture below depicts the layout of the E-DDC
structure:

Segment Pointer
Address 60h

write only register

Block 1

Block 2

Block 3

Block n*2

Block 0

Block n*2 + 1

Segment Pointer 0

Segment Pointer 1

Segment Pointer N

Data register

Address

Word offset

Figure 14 E-DDC segment pointer an block layout

Basically in order to read an EDID block the I2C sequence looks like this:

S segPtr
Addr

A seg
Ptr

A RS dataReg
Addr

A word
Offset

A RS dataReg
Addr+1

A pData A /
NA

P

(S = Start; A = Acknowledge; RS = Repeated Start; pData is read lenData times; NA = No
Acknowledge on last byte; P = Stop)

NXP Semiconductors Caen HDMI Tx Starter Guide

 Page: 27 / 32

A four block EDID reading I2C sequence performed by the driver will look like this:

1. EdidBlockRead(0x00, 0x00, 0xA0, 0x00, 0x80, pData)

2. EdidBlockRead(0x00, 0x00, 0xA0, 0x80, 0x80, pData)

3. EdidBlockRead(0x60, 0x01, 0xA0, 0x00, 0x80, pData)

4. EdidBlockRead(0x60, 0x01, 0xA0, 0x80, 0x80, pData)

On the I2C bus one can see the following I2C transactions:

Figure 15 Four blocks EDID reading I2C sequence

Note1: the segment pointer positioning for Segment Pointer 0 is optional.

Note2: there is only one stop bit at the end of one EDID block read transaction.

3.14 Zip delivery file structure

3.14.1 High level driver

 The cfg directory of the high level driver contains

o tmdlHdmiTx_cfg.h a header file that defines the configurable items

o tmdlHdmiTx_cfg.c configuration example file.
 This file shall be customized by the client application.

o tmdlHdmiTx_IW.h a header file that defines the required OS interface

o tmdlHdmiTx_IW.c an OS implementation example file.
 This file shall be customized by the client application.

3.14.2 Low level driver

The tmbslHdmiTx driver is physically organized in two parts; one which defines a generic API
whatever the underlying HDMI Tx hardware, and the other which defines a given HDMI Tx IC
driver implementation.

NXP Semiconductors Caen HDMI Tx Starter Guide

 Page: 28 / 32

3.14.3 Shared include files

Some shared headers that contain types definitions files are located under directory
HdmiTx\sde2\inc.

3.14.4 Example Application

An HDMI Tx application, used in polling mode, is provided as example for a LPC2148
microcontroller with RTL-RTX as OS. The source files of the example application are located in
the following directory:

Example Application

HdmiTx/sde2/comps/tmdlHdmiTx/tst/tmdlHdmiTx_ExampleApplication/src/tmdlHdmiTx_ExampleApplicationArm7.c

This application takes a 720x480p60Hz YUV4:2:2sp video as input. Then, depending on display
sink capabilities (retrieved from EDID reading) and on HDMI TX IC possibilities it outputs the first
video format that is available in those two lists.

This application can be easily customized with the following variables:

Variable name Description

gVideoInConfig Video input configuration

gVideoOutConfig Video output configuration

gAudioInConfig Audio input configuration

gHDCPMode Enable/Disable the HDCP mode

gSinkType Specifies the type of sink device

gDlHdmiTxSetupInfo Specifies setup informations such as EDID buffer
size & address, repeater feature, simplay HD
feature.

NXP Semiconductors Caen HDMI Tx Starter Guide

 Page: 29 / 32

4. Document Management

4.1 Document History

Version Date Author Observations

0.1 18 October 2007 Cyril Bes Document creation.

0.2 07 November 2007 Cyril Bes Rework after first review

0.3 15 November 2007 Cyril Bes Remove multi–instance chapter

0.5 04 December 2007 Cyril Bes Update document to reflect API changes.

0.6 27 February 2008 Cyril Bes Update document to reflect API changes and
configuration file changes.

0.7 05 March 2008 Cyril Bes Update HDMI output sequence diagram

0.8 17 March 2008 S. Desramé Update related to the TDA9983

0.9 21 March 2008 S. Desramé Update after review

0.10 28 March 2008 Cyril Bes Add LIPP4200 specificities

0.11 28 March 2008 Cyril Bes Add TDA9984 specificities

0.12 23 April 2008 Cyril Bes Refine Video/Audio input ports mapping
explanation.

0.13 19 May 2008 Cyril Bes Make references to deliverd example
application.

0.14 22 May 2008 S. Desramé Add usage of the revocation list

0.15 22 May 2008 S. Desramé Add constraint regarding the location of the KSV
revocation list

0.16 23 May 2008 Cyril Bes Document all compilation switches.
Remove LIPP4200 specificities

0.17 12 June 2008 Cyril Bes Explain TDA9981/TDA9983 Edid reading
specificities.

0.18 13 June 2008 S. Desramé Update related to PR 1522: remove API
tmdlHdmiTxReset

0.19 19 June 2008 Cyril Bes Remove API
tmdlHdmiTxSetAClkRecoveryPacket

Add description of new API
tmdlHdmiTxGetHdcpFailStatus

0.20 04 July 2008 Cyril Bes Update tmdlHdmiTxSetHDCPRevocationList
behavior and returns code.

0.21 22 Sept 2008 Cyril Bes Update NO OS documentation.
Update TDA9989 SetPowerState usage.

0.22 17 Nov 2008 Cyril Bes Update TDA9983 specificities.
TDA9983 can not be used in interrupt mode
(HW issue: HPD interrupt not always generated)

0.23 08 Jan 2009 Cyril Bes Update tmdlHdmiTxGetEdidVideoCaps
VideoFlags description.
Add tmdlHdmiTxGetEdidLatencyInfo description.

0.25 28 July 2009 Cyril Bes Document TDA19989 required compilation flags.

0.26 10 Sept 2009 Cyril Bes Document TDA9989 sw workaround for EDID
Panasonic TH-17LX8 reading issue.

0.27 12 Oct 2009 Cyril Bes Document new APIs.
tmdlHdmiTxGetHPDStatus
tmdlHdmiTxGetRXSenseStatus

NXP Semiconductors Caen HDMI Tx Starter Guide

 Page: 30 / 32

0.28 28 Oct 2009 Cyril Bes Explain in which conditions 5V can be cut.

0.29 04 Jan 2009 Cyril Bes Explain dataEnableSignalAvailable parameter in
cfg file.

0.30 05 Mar 2010 Wenzhi Guo Describe the new API
tmdlHdmiTxSetExtendedColorimetry

0.31 29 Nov 2010 André Lépine 3D management

0.32 10 May 2011 Vincent Vrignaud Linux kernel compilation. Minor updates.

4.2 Document References

[TDA9983] Objective Datasheet of TDA9983 rev 01 27 october 2006

[TDA19984] Objective Datasheet of TDA9984 rev. 01 23 july 2007

[TDA19988] Objective Datasheet of TDA9988 rev. 02 28 april 2011

[TDA19989] Objective Datasheet of TDA9989 rev. 01 16 october 2007

[HDMI_SPEC] High-Definition Multimedia Interface Specification Version 1.4a

[CEA-861-D] A Digital Television Profile for Uncompressed High Speed Digital Interfaces

[SIMPLAY_HD] Simplay HD Specification v1.2

[HDCP] High-bandwidth digital content protection system v1.2

NXP Semiconductors Caen HDMI Tx Starter Guide

 Page: 31 / 32

4.3 Abbreviations and terminology

CEC
The Consumer Electronics Control protocol provides high-level control functions (such
as „one touch play‟,) between all of the various audiovisual products in a user‟s
environment.

CTS

Audio data being carried across the HDMI link, which is driven by a TMDS clock
running at a rate corresponding to the video pixel rate, does not retain the original
audio sample clock. The Cycle Time Stamp (CTS) value is used by the Sink device to
recreate this clock.

Data Island

The HDMI link operates in one of three modes: Video Data Period, Data Island period,
and Control period. During the Video Data Period, the active pixels of an active video
line are transmitted. During the Data Island period, audio and auxiliary data are
transmitted using a series of packets. The Control period is used when no video,
audio, or auxiliary data needs to be transmitted. A Control Period is required between
any two periods that are not Control Periods.

DDC

The Display Data Channel is a digital connection between a monitor and a graphics
adapter that allows the display to communicate its specifications to the adapter. The
monitor contains a read-only memory chip programmed by the manufacturer with
information about the graphics modes that the monitor can display. The data in the
monitor's ROM is held in a standard format called extended display identification data
(EDID). Moreover, this communication bus is also used for HDCP exchanges.

DST
An audio format which is a lossless compression of Direct Stream Digital (DSD), as
used in SuperAudio CD. DST is described in ISO/IEC 14496, part 3, Amendment 6:
Lossless coding of oversampled audio.

DVI

The Digital Visual Interface (DVI) is a video interface standard designed to maximize
the visual quality of digital display devices such as flat panel LCD computer displays
and digital projectors. It is designed for carrying uncompressed digital video data to a
display.

EDID
Extended Display Identification Data is a data structure provided by a display to
describe its capabilities to a graphics adapter.

HBR High Bitrate (HBR) Audio Stream Packet (IEC 61937)

HDCP

High-bandwidth Digital Content Protection (HDCP) is a form of Digital Rights
Management (DRM) developed by Intel Corporation to control digital audio and video
content as it travels across Digital Visual Interface (DVI) or High-Definition Multimedia
Interface (HDMI) connections. The specification is proprietary, and creating an
implementation of HDCP requires a license.

HDMI

The High-Definition Multimedia Interface (HDMI) is a licensable audio/video connector
interface for transmitting uncompressed, encrypted digital streams. HDMI specification
defines the protocol and electrical specifications for the signaling, as well as the pin-
out, electrical and mechanical requirements of the cable and connectors.

HPD Hot Plug Detect.

InfoFrame
A data structure defined in [CEA-861-D] that is designed to carry a variety of auxiliary
data items regarding the audio or video streams or the source device and is carried
from Source to Sink across HDMI.

NXP Semiconductors Caen HDMI Tx Starter Guide

 Page: 32 / 32

ISR
An Interrupt Service Routine (ISR), is a callback subroutine in an operating system or
device driver whose execution is triggered by the reception of an interrupt.

ISRC
The International Standard Recording Code (ISRC), defined by ISO 3901, is an
international standard code for uniquely identifying sound recordings and music video
recordings.

KSV

Each HDCP Device contains a set of Device Private Keys. A set of Device Private
Keys is associated with a Key Selection Vector (KSV). Each HDCP Transmitter has
assigned to it a unique KSV from all other HDCP Transmitters. Also, each HDCP
Receiver has assigned to it a unique KSV from all other HDCP Receivers.

OBA 1-bit Delta-Sigma modulated signal stream such as that used by Super Audio CD.

Physical Address

In order to allow CEC to be able to address specific physical devices and control
switches, all devices shall have a physical address. The physical address discovery
process uses only the DDC/EDID mechanism and applies to all HDMI Sinks and
Repeaters, not only to CEC-capable devices. A Source or a Repeater reads its
physical address from the EDID of the connected Sink.

Preferred Video
Format

The video format that a display manufacturer determines provides optimum image.

Repeater
A device with one or more HDMI inputs and one or more HDMI outputs. Repeater
devices shall simultaneously behave as both an HDMI Sink and an HDMI Source.

TMDS

Transition Minimized Differential Signaling (TMDS) is a technology for transmitting
high-speed serial data and is used by the DVI and HDMI video interfaces. The
transmitter incorporates an advanced coding algorithm which has reduced
electromagnetic interference over copper cables and enables robust clock recovery at
the receiver to achieve high skew tolerance for driving longer cable lengths as well as
shorter low cost cables.

Video Format

A video format is sufficiently defined such that when it is received at the monitor, the
monitor has enough information to properly display the video to the user. The definition
of each format includes a Video Format Timing, the picture aspect ratio, and a
colorimetry space.

